Measurement of Orbitally Excited D-Mesons at CDF II

Igor Gorelov,

University of New Mexico

On behalf of

CDF Collaboration, F.N.A.L.

First Meeting of the APS Topical Group on Hadronic Physics.

October 24 - 26, 2004, FERMILAB.

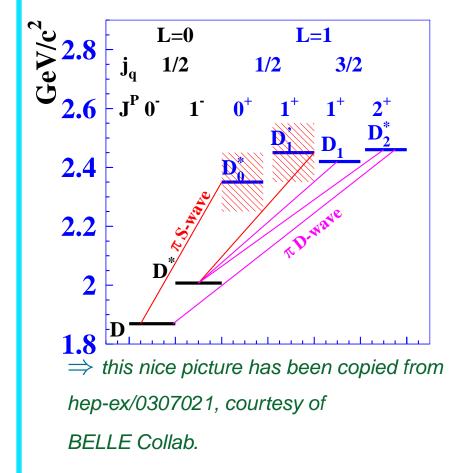
1 – Outline

- $\checkmark D_J$ Mesons: Short Introduction.
- √ Experimental Status.
- √ CDF Experimental Procedure.
 - Data Sample and Triggers.
 - Requirements and Reconstruction of D- Mesons.
 - Control of a Calibration.

$$\checkmark D^0_J \to D^{*+}\pi^-$$
 Mode.

$$\checkmark D^0_J \to D^+\pi^-$$
 Mode.

- Results.
- Conclusions.

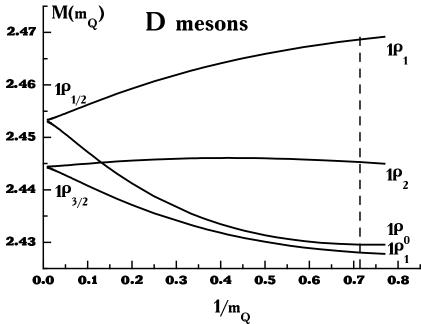

2 – Introduction

Many properties of hadrons composed from a single heavy quark Q can be simplified substantially in the large heavy quark mass limit $m_Q \to \infty$. With $m_Q \gg \Lambda_{QCD}$ the degrees of freedom of the light quark system become insensitive to the mass $m_{\mathcal{Q}}$ and the heavy quark acts simply as a non recoiling source of color. This approach was abbreviated as H.Q.E.T. models. \Rightarrow In HQET Charm D-mesons $\bar{\mathbf{q}}\mathbf{Q}$ can be treated as a quark ⇒ Consider L=1, D-mesons: "hydrogen atom":

- heavy charm quark spin $s_Q=\frac{1}{2}^+$ $J=\frac{1}{2}^+\oplus\frac{1}{2}^+$ or decouples from light quark degrees of freedoms.
- the light anti-quark spin-parity $s_q = \frac{1}{2}^-$ couples with its orbital momentum L .
- $ec{j_a} = ec{s_a} \, + \, ec{L}$ is a good quantum number.
- $\vec{J} = \vec{j_a} + \vec{s_Q}$ is a total momentum.

- - D'_1 meson, $1^+(^1P_1)$ and D_0^* meson, 0^+ (1P_0).
- $J = \frac{3}{2}^+ \oplus \frac{1}{2}^+$ or
 - D_1 meson, $1^+(^3P_1)$ and D_2^* meson, 2^+ (3P_2).
- As m_Q is large, but not infinite, $ec{j_q} - ec{s_Q}$ interaction splits the mass states within these doublets.

\Rightarrow S- and P-wave multiplets of D-mesons:



\Rightarrow ... and their possible decay modes:

- **strong decays** with emission of π , 0^-
 - **P**-parity and **I** are conserved.
- $\frac{1}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$, π emitted in S-wave, L=0.
 - broad $\Gamma_{theor.} \sim 170 990 \, \mathrm{MeV}$
 - $\mathbf{D'_1} \to \mathbf{D^*}\pi$, $1^+ \to 1^- + 0^-$
 - $\mathbf{D_0^*} \to \mathbf{D}\pi, 0^+ \to 0^- + 0^-$
- $\frac{3}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$, π emitted in D-wave, L=2.
 - narrow $\Gamma_{theor.} \sim 15 45 \, \mathrm{MeV}$
 - $\mathbf{D_1} \to \mathbf{D}^* \pi, 1^+ \to 1^- + 0^-$
 - $\mathbf{D_2^*} \to \mathbf{D}\pi, 2^+ \to 0^- + 0^-$
 - $\mathbf{D_2^*} \to \mathbf{D^*}\pi, 2^+ \to 1^- + 0^-$
- D'₁, D₁ states are mixed.

⇒ Yu.S.Kalashnikova, A.V.Nevediev in Phys.Lett. B530(2002)117 [hep-ph/0112330] used another approach – QCD string with quarks at the ends:

• D_J mass splittings in P-wave multiplets.

- ⇒ One has to mention here about a limited range of theoretical predictions of HQET, string or other models.
- \Rightarrow The recent discoveries of $D_s(2317),\,D_s(2457)$ pose a challenge for these theoretical approaches (see e.g. tomorrow a talk by Alexei Droutskoy, BELLE).

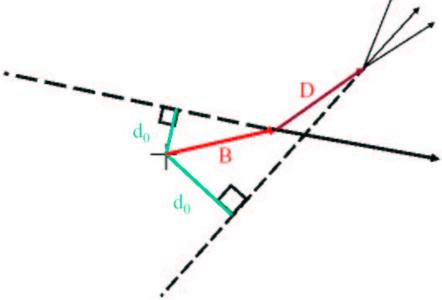
3 – Experimental Status

- \Rightarrow The experimental study was pioneered by ARGUS in 1985 with a discovery of a $D_1(2420)^0,\ 1^+$ state.
- \Rightarrow This talk presents a study on P-wave neutral $\mathbf{D_J^0}$ -mesons in $\mathbf{D^+}\pi^-, \mathbf{D^{*+}}\pi^-.$

Group	State	Mode	Mass, MeV/c ²	Γ , MeV/c 2
CLEO94	D_2^{*0}	$D^+\pi^-$	2465±3±3	$28^{+8}_{-7}\pm6$
BELLE03	D_2^{*0}	$D^+\pi^-$	2461.6±2.1±3.3	45.6±4.4±6.7
FOCUS04	D_2^{*0}	$D^+\pi^-$	2464.5±1.1±1.9	38.7±5.3±2.9
CLEO94	D_1^0	$D^{*+}\pi^{-}$	$2421^{+1}_{-2}\pm 2$	$20^{+6}_{-5}\pm3$
BELLE03	D_1^0	$D^{*+}\pi^{-}$	2421.4±1.5±0.9	23.7±2.7±4.0
CLEO99	D'_{1}^{0}	$D^{*+}\pi^{-}$	$2461^{+41}_{-34}\pm34$	$290^{+101}_{-79}\pm44$
BELLE03	D'_{1}^{0}	$D^{*+}\pi^{-}$	2427±26±25	$384^{+107}_{-75}\pm74$
BELLE03	D_0^{*0}	$D^+\pi^-$	2308±17±32	276±21±63
FOCUS04	D_0^{*0}	$D^+\pi^-$	2407±21±35	240±55±59

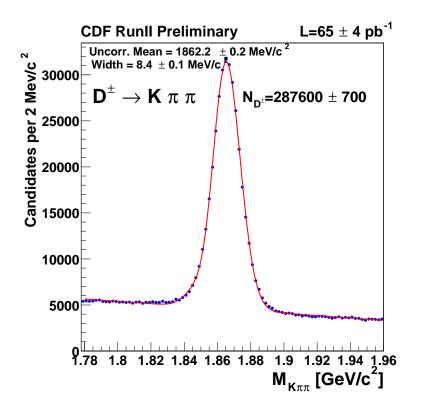
4 – CDF Data Sample and Triggers.

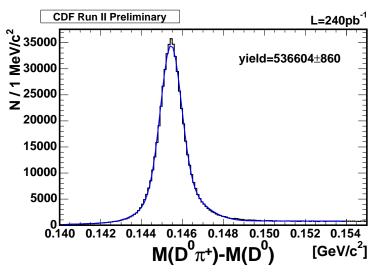
⇒ Impact Parameter Two Track


Trigger:

- Level 1 eXtremely Fast Tracker (XFT) with COT detector.
 - $p_T^{1,2} > 2.0 \, GeV/c$
 - $p_T^1 + p_T^2 > 5.5 \, GeV/c$
- Level 2 Silicon Vertex Tracker (SVT), impact parameter requirements:

$$\Rightarrow 1000 \mu m > d_0^{1,2} > 120 \mu m$$


• impact ${\sf parameter\ resolution\ by\ CDF\ Si\ detector}$ ${\sigma(d_0)\,=\,\sigma_{\rm beam}\,\oplus\,\sigma_{\rm Si\ Resol}\,=\,48\mu{\rm m}}$


At a Level 3: a full event reconstruction.

CDF 'Silicon Vertex Tracking' trigger: displaced track requirements.

- The trigger allowed to collect large samples of D^0, D^+, D^{st+} .
- \sim 0.5M D^{*+} with present $\mathcal{L} \sim 210~pb^{-1}$.

$$\delta M(D^{*+}, D^0) = 145.4 \, MeV/c^2$$

 $\sigma(\delta M(D^{*+}, D^0)) \sim 0.5 \, MeV/c^2$

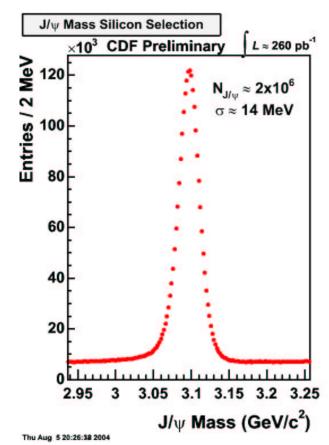
- Two Track Trigger: Rich physics in Charm and Beauty sector.
- Competitive data samples for studies of a P-wave D-meson multiplet.

5 – Analysis of ${f D}^{*+}\pi^-$ and ${f D}^+\pi^-$ Mass Spectra

$$\mathbf{D_J^0} o \mathbf{D^{*+}} \pi_{\mathbf{dec}}^-, \mathbf{D^{*+}} o \mathbf{D^0} \pi_{\mathbf{soft}}^+,$$
 $\mathbf{D^0} o \mathbf{K^-} \pi^+ + \text{chrg.conj.combs.}$

- Both $D_1^0, D_2^{st 0}$ do contribute to final
- The 2 hardest tracks of 4, e.g. $D^0 \to K^-\pi^+ \text{, trigger the event and}$ match the trigger information offline.
- The 4-track combination is subjected to the 2D-Vx fit offline, no mass constr-s.
- $\chi^2_{r-\phi}({\sf VxFit}) < 30$ and $L_{xy}({\sf Vx}) > 500 \mu m$
- " $D^0(K^-\pi^+)$ " $\in M(D^0) \pm 3\sigma$
- $\delta M = M("D^0"\pi_{soft}^+) M("D^0")$
- " $D^{*+}(D^0\pi^+_{soft})$ " $\in \delta M(D^{*+}) \pm 3\sigma$

$$\mathbf{D_J^0} \to \mathbf{D^+}\pi_{\mathbf{dec}}^-, \ \mathbf{D^+} \to \mathbf{K^-}\pi^+\pi^+ +$$
 chrg.conj.combs.

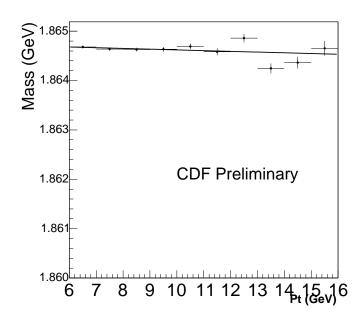

- Only D_2^{*0} does contribute.
- D^+ signal has higher background apply harder cuts.
- The 3D-Vx fit of 4-tracks and
- $\chi^2_{3D}({
 m VxFit}) < 12$ and $L_{xy}({
 m Vx}) > 1000 \mu m$
- " $D^+(K^-\pi^+\pi^+)$ " $\in M(D^+) \pm 3\sigma$
- $P_T^{\pi^-} > 800 MeV/c, \pi^- \in D^+ \pi_{dec}^-$
- ⇒ Work with mass difference spectra:

$$\Rightarrow \Delta \mathbf{M} = \mathbf{M}(\mathbf{D}^{(*+)\,\mathbf{or}\,(+)}\pi_{\mathbf{dec}}^{-}) -$$

$$\Rightarrow$$
 $\mathbf{M}(\mathbf{D}^{(*+)\,\mathrm{or}\,(+)})$

6 – Tracking Calibration.

- \Rightarrow A precise measurement of masses requires a very good control on the calibration of the tracking system made with $J/\Psi \to \mu^+\mu^-$ and $K_s^0 \to \pi^+\pi^-$.
 - The excellent mass resolution was achieved using a J/Ψ signal as a calibrating reference.
 - A good knowledge of a magnet field...
 - and of an amount of a dead material in Si tracker is required.
 - The yield is $N_{evts} \,=\, 2\cdot 10^{+6} {
 m of}\, J/\Psi.$
 - ullet ...and the $\sigma \sim 14\,{
 m MeV/c^2}$.

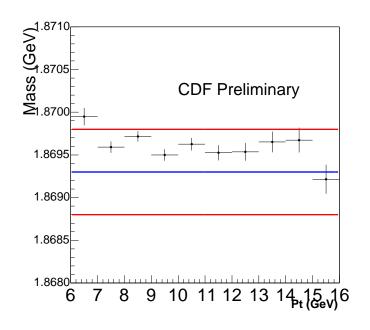


GHP 2004, 24 Oct 2004, FERMILAB.

\Rightarrow Checkout the calibration with our basic final states, D^0 , D^*+ and D^+ :

 $\Rightarrow M(D^0)_{meas}$. stability

as a function of P_T .



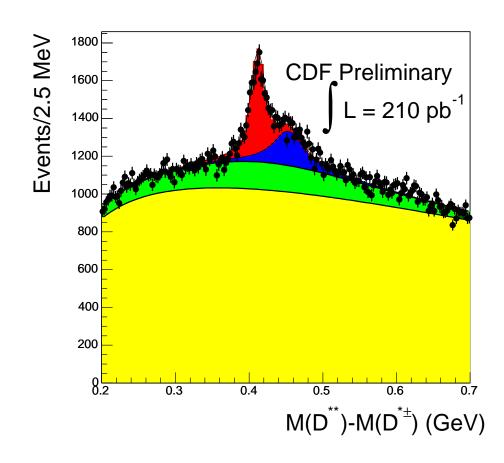
$$M(D_{pdg}^{0}) = 1864.6 \pm 0.5 MeV/c^{2} \qquad M(D_{pdg}^{+}) = 1869.3 \pm 0.5 MeV/c^{2}$$

$$\mathbf{M}(\mathbf{D^{0}})_{\mathbf{meas.}} \in \mathbf{M}(\mathbf{D^{0}})_{\mathbf{pdg}} \pm 1\sigma_{\mathbf{pdg}} \qquad \mathbf{M}(\mathbf{D^{+}})_{\mathbf{meas.}} \in \mathbf{M}(\mathbf{D^{+}})_{\mathbf{pdg}} \pm 1\sigma_{\mathbf{pdg}}$$

as a function of P_T .

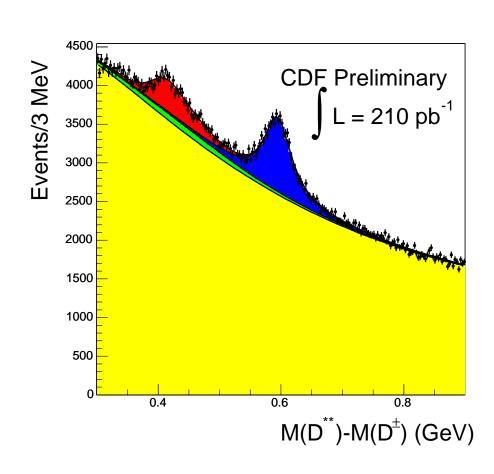
$$M(D_{pdg}^{0}) = 1864.6 \pm 0.5 MeV/c^{2} \qquad M(D_{pdg}^{+}) = 1869.3 \pm 0.5 MeV/c^{2}$$

$$\mathbf{M}(\mathbf{D^{0}})_{\mathbf{meas.}} \in \mathbf{M}(\mathbf{D^{0}})_{\mathbf{pdg}} \pm \mathbf{1}\sigma_{\mathbf{pdg}} \qquad \mathbf{M}(\mathbf{D^{+}})_{\mathbf{meas.}} \in \mathbf{M}(\mathbf{D^{+}})_{\mathbf{pdg}} \pm \mathbf{1}\sigma_{\mathbf{pdg}}$$


7 – Mass Difference Spectra for {f D}^{*+}\pi^- and {f D}^+\pi^- Modes.

$$\Rightarrow$$
 Plot $\Delta M = M("D^{*+}"\pi_{dec}^{-}) - M("D^{*+}")$

Two peaks corresponding to


narrow resonances:

- $\Delta M(D_1(2420)^0) \sim 410 \, MeV/c^2$,
- $N(D_1^0) \sim$ 7000 evts.
- $\Delta M(D_2^*(2460)^0)) \sim 450 \, MeV/c^2$,
- $N(D_2^{*0}) \sim$ 4000 evts.
- The possible contribution of a broad ${D'}_1^0$ component
- Large combinatoric background

$$\Rightarrow$$
 Plot $\Delta M = M("D^+"\pi_{dec}^-) - M("D^+")$

- Two visible bumps can be attributed to:
 - $\Delta M(D_2^*(2460)^0)) \sim 600 \, MeV/c^2$,
 - structure $\Delta M \sim 400\,MeV/c^2,$ feed-downs from both $D^{*+}\pi^- \text{ states, when}$ $D^{*+}\to D^+\pi^0,\,BR\sim$ $31\%,\,\pi^0 \text{ goes undetected.}$
- The possible contribution of a broad D_0^{*0} component.
- Again large combinatoric background.

8 – Fits of Mass Difference Spectra

- \Rightarrow Both ΔM histograms have been fitted simultaneously. The likelihood function used has independent background and broad state $\Delta M(D_1^0 \ or \ D_0^{*0})$ terms, while the same values for $\Delta M(D_1^0 \ or \ D_2^{*0})$ and $\Gamma(D_1^0 \ or \ D_2^{*0})$
 - $Bgr(\Delta M) = a \cdot \Delta M^b \cdot \exp(-\Delta M) \cdot c \cdot \sqrt{\Delta M m_{\pi}} + Const(D^+\pi^- \text{mode only})$
 - The broad and narrow resonances and feed-downs are described by $\mathcal{BW} \oplus Gaussian.$
 - The resolutions σ for Gaussian have been obtained from extensive MC studies and **fixed in the fits**.

- The fit has been tested with MC sample of imes 2 larger size than data.
- No selection biases have been observed.
- The corresponding statistical uncertainty of fits of MC samples contributes into a systematics.
- The broad states masses and widths have been fixed to the PDG $(D^{\prime}_{1}^{0})$ or the most recent measurements (D_{0}^{*0}) .

9 – Neutral 3P Charmed Mesons Mass and Width Results.

\Rightarrow The experimental numbers:

- $\mathbf{M}(\mathbf{D_1^0}) \mathbf{M}(\mathbf{D^{*+}}) = 411.7 \pm 0.7 \pm 0.4 \, \mathbf{MeV/c^2}$
- ${f M}({f D_1^0}) = {f 2421.7 \pm 0.7 \pm 0.6\, MeV/c^2}$
- $\Gamma(\mathbf{D_1^0}) = 20.0 \pm 1.7 \pm 1.3\,\mathrm{MeV/c^2}$
- ${f M}({f D_2^{*0}}) {f M}({f D^{*+}}) = {f 594.0} \pm 0.6 \pm 0.5 \, {f MeV/c^2}$
- $\mathbf{M}(\mathbf{D_2^{*0}}) = \mathbf{2463.3} \pm 0.6 \pm 0.8\,\mathbf{MeV/c^2}$
- $oldsymbol{\Gamma}(\mathbf{D_2^{*0}}) = 49.2 \pm 2.1 \pm 1.2 \, \mathrm{MeV/c^2}$

⇒ The experimental numbers to be compared with other measurements:

Group	State	Mode	Mass, MeV/c ²	Γ , MeV/c 2
CLEO94	D_2^{*0}	$D^+\pi^-$	2465±3±3	$28^{+8}_{-7}\pm6$
BELLE03	D_2^{*0}	$D^+\pi^-$	2461.6±2.1±3.3	45.6±4.4±6.7
FOCUS04	D_2^{*0}	$D^+\pi^-$	2464.5±1.1±1.9	38.7±5.3±2.9
PDG04	D_2^{*0}	$D^{(*+or+)}\pi^{-}$	2458.9±2.0	23±5
CDF II	$\mathbf{D_2^{*0}}$	$\mathbf{D}^{+}\pi^{-}$	2463.3±0.6±0.8	49.2±2.1±1.2
CLEO94	D_1^0	$D^{*+}\pi^{-}$	$2421^{+1}_{-2}\pm 2$	$20^{+6}_{-5}\pm3$
BELLE03	D_1^0	$D^{*+}\pi^-$	2421.4±1.5±0.9	23.7±2.7±4.0
PDG04	D_1^0	$D^{*+}\pi^{-}$	2422.2± 1.8	$18.9_{-3.5}^{+4.6}$
CDF II	$\mathbf{D_1^0}$	${f D}^{*+}\pi^-$	2421.7±0.7±0.6	20.0±1.7±1.3

⇒ The systematics comes from:

 MC statistics determining the uncertainty of fits and Broad states mass and width assignments (the largest contribution), COT tracker ionization corrections, Magnet B-field and PDG masses uncertainties.

10 - Conclusions

- CDF II Collaboration has presented the first measurements of neutral P-wave D_1^0 and D_2^{*0} charmed mesons produced at hadron collider Tevatron.
- Thanks to a wonderful CDF tracking the measurements are of the best statistical and systematical uncertainties available now at the HEP market.
- The mass measurements of the states are in good agreement with world data.
- While $\Gamma(D_1^0)$ is in a good agreement with world data, $\Gamma(D_2^{*0})$ is in a good 1σ agreement with BELLE03 and FOCUS04 but does quite differ from PDG 2004 average value. This difference might provide an interesting input to theoretical developments. ;-)

THE END OF THE TALK.